Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tiny machine learning (TinyML) applications increasingly operate in dynamically changing deployment scenarios, requiring optimization for both accuracy and latency. Existing methods mainly target a single point in the accuracy/latency tradeoff space, which is insufficient as no single static point can be optimal under variable conditions. We draw on a recently proposed weight-shared SuperNet mechanism to enable serving a stream of queries that activates different SubNets within a SuperNet. This creates an opportunity to exploit the inherent temporal locality of different queries that use the same SuperNet. We propose a hardware–software co-design called SUSHI that introduces a novel SubGraph Stationary optimization. SUSHI consists of a novel field-programmable gate array implementation and a software scheduler that controls which SubNets to serve and which SubGraph to cache in real time. SUSHI yields up to a 32% improvement in latency, 0.98% increase in served accuracy, and achieves up to 78.7% off-chip energy saved across several neural network architectures.more » « less
-
Song, Dawn; Carbin, Michael; Chen, T (Ed.)
-
There is a growing rise of applications that need to support a library of models with diverse latency-accuracy trade-offs on a Pareto frontier, especially in the health-care domain. This work presents an end-to-end system for training and serving weight-sharing models. On the training end, we leverage recent research in creating a family of models on the latency- accuracy Pareto frontier that share weights, reducing the total number of unique parameters. On the serving (inference end), we propose a novel accelerator FastSwitch that extracts weight reuse across different models, thereby providing fast real-time switching between different models.more » « less
-
Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A. (Ed.)Machine Learning (ML) research has focused on maximizing the accuracy of predictive tasks. ML models, however, are increasingly more complex, resource intensive, and costlier to deploy in resource-constrained environments. These issues are exacerbated for prediction tasks with sequential classification on progressively transitioned stages with “happens-before” relation between them.We argue that it is possible to “unfold” a monolithic single multi-class classifier, typically trained for all stages using all data, into a series of single-stage classifiers. Each single- stage classifier can be cascaded gradually from cheaper to more expensive binary classifiers that are trained using only the necessary data modalities or features required for that stage. UnfoldML is a cost-aware and uncertainty-based dynamic 2D prediction pipeline for multi-stage classification that enables (1) navigation of the accuracy/cost tradeoff space, (2) reducing the spatio-temporal cost of inference by orders of magnitude, and (3) early prediction on proceeding stages. UnfoldML achieves orders of magnitude better cost in clinical settings, while detecting multi- stage disease development in real time. It achieves within 0.1% accuracy from the highest-performing multi-class baseline, while saving close to 20X on spatio- temporal cost of inference and earlier (3.5hrs) disease onset prediction. We also show that UnfoldML generalizes to image classification, where it can predict different level of labels (from coarse to fine) given different level of abstractions of a image, saving close to 5X cost with as little as 0.4% accuracy reduction.more » « less
An official website of the United States government

Full Text Available